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Abstract

There is currently increasing concern about the relation between microbial infections and
cancer. More and more studies support the view that there is an association, above all, when
the causal agents are bacteria or viruses. This review adds to this, summarizing evidence that
the opportunistic fungus Candida albicans increases the risk of carcinogenesis and metastasis.
Until recent years, Candida spp. had fundamentally been linked to cancerous processes as it is
an opportunist pathogen that takes advantage of the immunosuppressed state of patients
particularly due to chemotherapy. In contrast, the most recent findings demonstrate that
C. albicans is capable of promoting cancer by several mechanisms, as described in the review:
production of carcinogenic byproducts, triggering of inflammation, induction of Th17 response
and molecular mimicry. We underline the need not only to control this type of infection during
cancer treatment, especially given the major role of this yeast species in nosocomial infections,
but also to find new therapeutic approaches to avoid the pro-tumor effect of this fungal
species.
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Introduction

Cancer is one of the most serious health problems faced by

many individuals in the course of their life. As the disease

progresses, there is uncontrolled cell growth, tissue invasion,

and in the worst cases, metastasis. This disease progression

requires the shedding of malignant cells from the primary

tumor and their intravascular migration to another organ

where they adhere and proliferate, in a similar way to the

primary tumor. With the biotechnology revolution and the

development of biomedicine, there have been important

advances in the detection, control and even cure of the

disease, depending on the type of cancer and stage at

diagnosis. However, this dreaded disease continues to be

associated with death, suffering and often a high economic

burden. Specifically, cancer figures among the leading causes

of death worldwide and accounted approximately 8.2 million

deaths in 2012, being metastases the main cause of death from

cancer (Ferlay et al., 2012).

Cancer has been linked to microbial infections because

they are a likely consequence of transient immunodeficiency,

this being commonly seen in cancer patients mainly due to

chemotherapy. Our immune system is normally prepared to

maintain a balance with the microbiota of our bodies and

to combat most microbial invasions. In contrast, in immuno-

suppressed states, created by cancer treatments, these func-

tions are impaired and patients are at an increased risk of

infection.

Interestingly, it seems that the inverse process is also

possible, and there is a steady increase in the publication of

studies that link the presence of microorganisms with a higher

risk of developing cancer. Many of these publications also

describe how microorganisms are, in various ways, involved

in the initiation, establishment or spread of cancer.

Several mechanisms are implicated in this relation between

infection and cancer development. One of them is the direct

alteration in the DNA damage response, resulting in the

appearance of genetic mutations that accumulate inside the

cell and/or the expression of oncogenes that modify cell

survival and proliferation. The pathogenic agents most widely

studied as inducers of cancer by this mechanism are a range

of viruses. In particular, the following viruses have been

classified by the International Agency for Research on Cancer

(IARC) as ‘‘carcinogenic to humans’’: Epstein–Barr virus

(EBV), hepatitis B virus (HBV), several types of human

papillomavirus (HPV), human T-cell lymphotropic virus type

1 (HTLV-1), hepatitis C virus (HCV), Kaposi’s sarcoma-

associated herpes virus (KSHV), also known as human herpes

virus 8 (HHV-8) and human immunodeficiency virus type-1

(HIV-1). Conservative estimates suggest that 12% of the

global cancer burden may be attributed to viruses, the
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percentage being even higher in developing countries

(Parkin, 2006).

However, although infection may be important, it does not

seem to be by itself able to cause cancer (Sarid & Gao, 2011).

In relation to this, current evidence indicates that some

pro-cancerous infections are closely related to inflammation.

This is another mechanism that could favor the development

of primary tumors and metastases. Infections may alter

the tumor microenvironment by inducing the expression

of cytokines involved in cell proliferation, and migration.

This occurs, for example, in colorectal cancer due to

Fusobacterium spp. (Keku et al., 2013; Kostic et al., 2013;

McCoy et al., 2013; Rubinstein et al., 2013), and in

hepatocellular carcinoma due to HBV (Na et al., 2011) and

EBV (Baumforth et al., 2008; Chetaille et al., 2009; Heller

et al., 2008) infections. Moreover, the carcinogenesis induced

by Helicobacter pylori, which is responsible for a high

percentage of gastric cancers (IARC Working Group on the

Evaluation of Carcinogenic Risks to Humans, 1994; Kato

et al., 2007; Parkin, 2006), is related to the inflammation it

causes, as well as many other factors (Tepes, 2009). It has

even recently been suggested that commensal microbiota play

a role in inflammation-induced cancer (Elinav et al., 2013;

Schwabe & Jobin, 2013). In addition to inflammation,

there are other mechanisms by which viruses and bacteria

are able to promote cancer development or progression,

such as genotoxicity, molecular mimicry and production of

metabolic carcinogens.

On the other hand, relatively few studies have analyzed

the influence that fungal diseases might have on tumor

establishment and progression. Among the few that have

been reported, one study found that tumor size in mice

increased significantly after infection with Aspergillus

conidia (Sohrabi et al., 2010) and, above all, several studies

concerning Candida albicans and its relationship with

cancer, make clear that fungi, like viruses and bacteria,

should be taken into account in investigating cancer.

Figure 1 shows a schematic comparison of the processes

that promote carcinogenesis described in viruses, bacteria

and fungi.

In this review, we focus on the dimorphic fungus

C. albicans and its relationship with cancer. This yeast is a

normal commensal of the human body and, as such, induces

no damage. However, it is capable of becoming pathogenic

when the host defenses are weakened. In such situations,

C. albicans is able to disseminate hematogenously, and spread

to multiple organs potentially causing serious problems.

The relation between cancer and C. albicans infections

has been widely studied because candidiasis is favored by the

immunosuppressed state resulting from intensive chemother-

apy for cancer (Almirante et al., 2005; Anttila et al., 1994;

Boehme et al., 2009; Lalla et al., 2010; Lamaris et al., 2008;

Matsuda et al., 2009; Pemán et al., 2002; Rafailidis et al.,

2008; Ruhnke & Maschmeyer, 2002). However, it has

recently been proposed that invasive candidiasis may be not

only a presenting symptom of cancer, but also a predictor of

cancer risk in later years (Norgaard et al., 2013). A potential

explanation for this is that candidiasis and cancer share some

common risk factors, such as various comorbidities, related

medication, lifestyle and suppression of the immune system

(Norgaard et al., 2013). What is more, studies published

in recent years (Gainza-Cirauqui et al., 2013; Ramirez-Garcia

et al., 2011, 2013; Rodriguez-Cuesta et al., 2010) provide

cumulative evidence that C. albicans is even able to stimulate

the onset and development of cancerous processes. These

studies describe several mechanisms by which this yeast

species can promote cancer: one is based on C. albicans

producing carcinogens such as acetaldehyde which can favor

the development of the disease; another pathway is via the

induction of an inflammatory process that may favor meta-

static progression; and there are other possible processes

related to molecular mimicry, and the Th17 response of our

immune system. In this review, we not only describe

candidiasis as a likely consequence of the weakness of

cancer patients, but also outline evidence that the opposite

effect is also possible, namely, that candidiasis, subclinical

infection with this yeast species and possibly even some

byproducts of its metabolism favor the development of cancer

or metastatic processes. To achieve this goal, we discuss

a series of key questions to improve our understanding of the

Figure 1. Carcinogenic mechanisms invol-
ving viruses, bacteria and fungi. CDT,
cytolethal distending toxin; DCA, deoxy-
cholic acid; LCA, lithocholic acid.

2 A. Ramirez-Garcia et al. Crit Rev Microbiol, Early Online: 1–13
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different potential mechanisms of action of this fungus in

cancer.

Are Candida infections a consequence of cancer?

The idea that there is a relation between candidiasis and

cancer is not new. Ten years ago, Girmenia et al. (2004)

noted that focal lesions in the liver or spleen (where Candida

is cleared from the blood) after recovery from chemotherapy-

induced neutropenia are a diagnostic sign of Candida

infection. The penetration of this fungal species into the

bloodstream and its dissemination hematogenously,

causing candidemia, can be life threatening, especially in

immunocompromised patients and those hospitalized with

serious underlying diseases such as hemato-oncological

malignancies (Nucci & Marr, 2005; Tortorano et al.,

2004, 2006).

In recent decades, the prevalence of candidiasis in

hospitals has increased and this has been attributed to the

use of catheters and immunosuppressive treatments, above all

chemotherapy, which promotes these infections (Almirante

et al., 2005; Lalla et al., 2010). In consequence, diseases

involving Candida species are also increasingly common in

cancer patients (Anttila et al., 1994).

For example, it is notable that as many as 35% of

candidemias were found in patients with hematological

malignancies or solid tumors as the underlying disease

(Zirkel et al., 2012), solid tumors being the most common

underlying condition in patients with candidiasis (Pemán

et al., 2002). As a complication of cancer and its treatment,

these infections are associated with a higher mortality

rate, prolonged hospitalization and rising healthcare costs

(Leleu et al., 2002; Morgan et al., 2005; Pfaller & Diekema,

2007; Rentz et al., 1998; Sipsas et al., 2009; Wey et al., 1988;

Zaoutis et al., 2005). For example, a European survey

detected a mortality rate of 45% in hemato-oncological

patients (Tortorano et al., 2004), and other analyses from

Finland and Spain confirmed this trend with mortality rates

of 35 and 44%, respectively (Almirante et al., 2005;

Cisterna et al., 2010; Poikonen et al., 2010). More recently,

a retrospective study indicated that mortality was even higher

after the diagnosis of Candida bloodstream infections, with

30 - and 100-day mortality rates of 56 and 67%, respectively

(Zirkel et al., 2012).

Consequently, it seems clear that Candida species do take

advantage of the situation experienced by patients with a

malignancy, worsening their condition, decreasing their

chances of overcoming the disease and shortening their

life expectancy. The impact of Candida seems to vary,

however, with the severity of underlying disease, and

even more importantly, on patients’ degree of cellular

immunosuppression.

Can C. albicans induce cancer by producing
carcinogenic substances?

There has been particular interest in the putative relation

between Candida and cancer in the case of mucosal

carcinomas, above all, in sites where the presence of the

fungus is most common, namely, genital and oral mucosa.

Among them, oral carcinogenesis has been the most widely

studied to explore the role of the fungus in the development of

this cancer.

Cawson (1969) and Williamson (1969) were the pioneers

in reporting the association of Candida with the progression

of the epithelial dysplasia in oral mucosa; i.e. oral carcino-

genesis. Since then, several studies have demonstrated that

oral cancer and pre-cancer lesions are frequently infected

by Candida species. However, currently there is insufficient

evidence to conclude that this pathogenic relation is true or,

in contrast, that it is simply a circumstance concurrent with

the opportunistic infection caused by this yeast (Hooper et al.,

2009; Meurman & Uittamo, 2008; van der Waal, 2010).

The most widely accepted hypothesis about the carcino-

genic effect of Candida species, C. albicans being the

dominant species, on the mucosal epithelium is related to

the production of carcinogens and/or the metabolism of

pro-carcinogens. A series of classic studies published years

ago (Krogh, 1990; Krogh et al., 1987a,b) suggested that

C. albicans might play an important role in oral carcinogen-

esis because it was able to produce nitrosamines, which

are carcinogens that could act alone or in combination with

other chemical compounds. The consequence of this is the

activation of specific proto-oncogenes that could trigger the

development of a cancerous lesion. The findings of these

studies were supported by other research such as a study

demonstrating that C. albicans could act as a promoter of

carcinogenesis in the rat tongue after repeated applications

of a nitroquinolone (4-nitroquinoline 1-oxide) (Ogrady &

Reade, 1992).

Unfortunately, after these initially promising results, there

has been a lack of continuity in the research in this field, and

these interesting findings have not been adequately confirmed

(Hooper et al., 2009). One of the few contributions is the

recent study by Sanjaya et al. (2011), who re-examined

the hypothesis that C. albicans can produce carcinogenic

nitrosamines, which are capable of triggering dysplastic

changes in the oral epithelium or carcinoma.

Regarding the metabolism of pro-carcinogens, there are

studies supporting the view that while ethanol itself is not

carcinogen when studied in vitro with human tissue culture

cells or with animal models, acetaldehyde is toxic, mutagenic

and indisputably carcinogenic, and therefore, it is a risk factor

for carcinoma (Poschl & Seitz, 2004). Acetaldehyde is

produced as the first metabolite of ethanol catabolism by

the enzyme alcohol dehydrogenase (ADH), which is active

both in epithelial cells and in oral microbiota, such as

C. albicans (Figure 2A). In the oral cavity, acetaldehyde

produces DNA and protein adducts, aberrant molecules

with structural and functional alterations [reviewed in Seitz

& Stickel, (2007); Figure 2B]. Acetaldehyde-induced DNA

adducts interfere with normal DNA replication causing point

mutations and chromosomal aberrations. Enzymes involved

in cytosine methylation and DNA repair are also affected by

this compound, promoting proto-oncogene activation and cell

cycle disturbances, which may result in tumor development

(IARC, 1999). Moreover, acetaldehyde binds to glutathione,

an essential anti-oxidative peptide, indirectly increasing the

presence of reactive oxygen species (ROS), which are related

to an increase in DNA damage. Mitochondrial damage is also

induced by acetaldehyde, increasing cell apoptosis, but also

DOI: 10.3109/1040841X.2014.913004 Candida albicans and cancer 3
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ROS and survival factors, such as NF-kb, which favor tumor

cell progression (Manzo-Avalos & Saavedra-Molina, 2010;

Seitz & Homann, 2007).

In line with this, several studies have reported that Candida

species promote carcinogenesis by producing acetaldehyde

from ethanol (Mohd Bakri et al., 2010; Nieminen et al., 2009;

Uittamo et al., 2009). Notably, C. albicans, C. tropicalis and

C. parapsilosis produce more acetaldehyde than other species

of this genus, in most cases exceeding carcinogenic levels

(4100 mM; Nieminen et al., 2009). Interestingly, C. albicans

isolates from high acetaldehyde-producing saliva samples

showed the greatest capacity to generate acetaldehyde

(4100 nmol/106 CFU; Tillonen et al., 1999). Moreover, a

recent study has shown that C. albicans strains isolated from

patients with oral leukoplakia produce more carcinogenic

acetaldehyde from ethanol than those from other potentially

malignant oral mucosal disorders (Gainza-Cirauqui et al.,

2013). Oral leukoplakia has been associated with a higher

risk of malignant transformation than oral lichenoid lesions

(van der Waal, 2010), and if untreated 5–10% of the patients

will develop carcinoma (Krogh et al., 1987b). This observa-

tion supports the idea that this ability of C. albicans may

Figure 2. Role of Candida albicans in tumor
genesis by production of carcinogenic sub-
stances. (A) C. albicans, using the enzyme
alcohol dehydrogenase (ADH1), is capable of
metabolizing alcohol and other substances,
such as carbohydrates, to acetaldehyde,
which is carcinogenic. (B) Acetaldehyde is
able to induce tumor development through
various different pathways. This carcinogen
binds to proteins and DNA modifying their
structure and functionality, and reduces anti-
oxidant activity of glutathione increasing the
levels of reactive oxygen species (ROS) in the
cell. These alterations may produce genome
instability, which linked with an inhibition of
the apoptotic machinery, may result in tumor
development.

4 A. Ramirez-Garcia et al. Crit Rev Microbiol, Early Online: 1–13
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contribute, along with other factors like tobacco or alcohol

consumption, to this carcinogenic effect.

In addition, another recent study (Marttila et al., 2013)

has shown that C. albicans can also produce high levels of

acetaldehyde under low oxygen concentrations. This finding

underlines the relation between poor oral hygiene and

squamous cell carcinoma of the oral cavity, because substrates

that could be metabolized to produce acetaldehyde would

be available for the microbiota for longer periods (Meurman

& Uittamo, 2008). In relation to this, it should also be

noted that other microbes of the human microbiota, apart

from C. albicans, may also be involved in this carcinogen

production (Schwabe & Jobin, 2013). In fact, the concentra-

tion of acetaldehyde can be up to 100 times higher in

saliva than in blood due to the limited metabolism of

acetaldehyde to acetate by oral bacteria (Seitz & Stickel,

2007, 2010).

However, since after the ingestion of ethanol, it is absorbed

from the gastrointestinal tract and circulated in the blood-

stream, acetaldehyde can also be produced in other organs

such as the intestine, liver or blood, where C. albicans may be

present. Hence, it cannot be ruled out that this acetaldehyde-

mediated carcinogenesis mechanism plays a role in locations

other than the oral cavity.

Can C. albicans promote metastasis by inducing
an inflammatory response?

For some years, it has been recognized that there is a

relationship between inflammation and cancer (Coussens &

Werb, 2002). The existence of this relation is supported by

epidemiological studies that have attributed as many as 25%

of cancer deaths worldwide to chronic inflammation

(Balkwill & Mantovani, 2001). This may be associated with

autoimmune diseases (inflammatory bowel disease), inflam-

matory conditions of unknown origin (e.g. prostatitis) and

smoking, among other factors. It is well-documented that all

of these factors increase the risk of certain cancers, but more

importantly for this review, it is also clear that chronic

inflammation can also be related to microbial infections

(Slattery et al., 2009).

The classic role of these inflammatory pathways in the

functioning of our immune system is to avoid or remove

infections. However, the inflammatory state is also necessary

to maintain and promote cancer progression and accomplish

the full malignant phenotype, such as tumor tissue remodel-

ing, angiogenesis, metastasis and the suppression of the

anticancer innate immune response (Wang et al., 2009).

The connection between inflammation and cancer can be

thought of as consisting of two pathways: an extrinsic

mechanism, in which a prolonged inflammatory microenvir-

onment contributes to increasing the risk of cancer and

promotes its progression; and an intrinsic mechanism, in

which acquired genetic alterations such as activation of

oncogenes trigger tumor development. Several infectious

agents are considered to be causes of cancer in humans, and

it was estimated that infection-attributable cancer accounted

for 17.8% of the global cancer burden in the year 2002

(Parkin, 2006). The effect of C. albicans on promoting

metastasis seems to be based on an inflammatory process,

which is accomplished in various successive steps that are

explained below.

Inflammatory response against C. albicans and
the cancer cascade

Initially, endothelial cells are responsible for the first contact

with the microorganisms when they disseminate. That is the

reason why research with endothelial cells is of special

relevance for studying the initial adhesion of C. albicans

during the spreading by the bloodstream to different organs

(Citiulo et al., 2012; Cleary et al., 2011; Falkensammer

et al., 2007; Filler et al., 1995, 1996; Glee et al., 2001; Grubb

et al., 2009; Jong et al., 2003; Kurihara et al., 2003; Lim et al.,

2011; Mayer et al., 2012; Orozco et al., 2000; Park et al.,

2009; Phan et al., 2000;Ramirez-Garcia et al., 2011, 2013;

Sanchez et al., 2004; Seidl et al., 2012; Zhao et al., 2007).

Once there, the recognition of the microorganisms is accom-

plished by pattern recognition receptors (PRRs), which

recognize conserved structures called pathogen-associated

molecular patterns (PAMPs) and danger-associated molecular

patterns (DAMPs; Gauglitz et al., 2012; Janeway, 1989;

Medzhitov & Janeway, 1997; Mogensen, 2009). So far, of all

PRRs, researchers have explored the involvement in the

recognition of C. albicans of three main groups, Toll-like

receptors (TLR), C-type lectin receptors (CLR) and Nod-like

receptors (NLR), and also Mac-1 integrin (Cheng et al., 2012;

Filler, 2006; Gauglitz et al., 2012; Netea & Marodi, 2010).

However, we are still in the early stages of understanding the

complexity of fungal recognition by endothelial cells, and

almost everything we know has been obtained from models

with other cell lines (Table 1).

Upon PAMP recognition, PRRs signal shows the presence

of infection to the host, at the cell surface or intracellularly, by

activating multiple intracellular signaling pathways, including

adaptor molecules, kinases and transcription factors (Akira &

Takeda, 2004). These PRR-induced signals ultimately result

in the activation of gene expression and synthesis of a broad

range of molecules including cytokines, cell adhesion mol-

ecules and immunoreceptors (Akira et al., 2006; Mogensen,

2009), responsible for pro-inflammatory and antimicrobial

responses.

The inflammatory response after recognition of

C. albicans has been less studied in endothelial cells than

in other cell types, but with the evidence accumulated over

recent years, it seems clear that numerous cytokines are

involved (Table 2). Some of these, such as CXCL1, CXCL2

and CXCL3, are very closely related to tumorigenesis and

angiogenesis in cancer (Belperio et al., 2000; Haghnegahdar

et al., 2000; Moore et al., 1998; Strieter et al., 2004, 2005).

It should be noted, however, that this is to be expected since due

to their association with inflammation, most pro-inflammatory

cytokines are in one way or another related to cancer.

Specifically, to date, the role of C. albicans in tumor adhesion

and metastasis has been linked to TNF-a and IL-18 (Ramirez-

Garcia et al., 2011, 2013; Rodriguez-Cuesta et al., 2010).

Increase in tumor cell adhesion by C. albicans

In recent years, evidence has been growing that C. albicans

might promote cancer and metastasis through a

DOI: 10.3109/1040841X.2014.913004 Candida albicans and cancer 5
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pro-inflammatory response, mediated by an increase in

cytokine production and in adhesion-molecule expression.

In healthy individuals, the pro-inflammatory response is

crucial to orchestrate an early host response to infection and,

at the same time, to activate and recruit multiple different

immune cells (Villar et al., 2005). However, patients with

cancer are commonly treated with chemotherapy and, conse-

quently, are immunosuppressed, which means that the popu-

lation of leukocytes is reduced or even eliminated. Given

this, circulating tumor cells, which may have evolved from

a primary tumor, could be attracted and adhere to the

endothelium instead of leukocytes, and this could be the

first step in establishing secondary tumors and metastasis

(Figure 3).

This phenomenon has mainly been studied in the liver

because this organ plays a crucial role in the clearance of

C. albicans and its antigens from the blood (Ramirez-Garcia

et al., 2013; Sawyer et al., 1976). Specifically, it was first

reported that a pro-inflammatory immune response of endo-

thelial cells after stimulation with microbial molecules (LPS),

tumor cells and other non-fungal microorganisms could

contribute to melanoma cell adhesion and metastasis in

the liver through a cytokine-dependent mechanism, as this

mechanism increases the expression of the VCAM-1 used by

certain melanoma cells to adhere to the endothelium

(Mendoza et al., 1998; Rodriguez-Cuesta et al., 2005;

Vidal-Vanaclocha et al., 2000). Nevertheless, despite the

importance of bacterial nosocomial infections in cancer

patients, which may favor metastasis through an inflamma-

tion-mediated process, no further studies with these types of

models have been conducted so far.

More recently, this effect has been explored with

C. albicans both in vivo and in vitro, it being demonstrated

that this fungus can stimulate metastasis even when there is

only sub-clinical infection (Ramirez-Garcia et al., 2011, 2013;

Rodriguez-Cuesta et al., 2010). This pro-metastatic effect of

C. albicans in the liver might even be favored by hepatic

endothelial cells, which have been described as a type of

antigen-presenting cell. After stimulation by these hepatic

cells, T cells differentiate into a regulatory T phenotype

instead of a cytotoxic phenotype, inducing an immune

tolerant state, which favors tumor cell survival (Berg et al.,

2006; Boettcher et al., 2011; Knolle & Limmer, 2001;

Limmer & Knolle, 2001; Onoe et al., 2005).

Are there other mechanisms by which C. albicans
can promote tumor progression?

Besides the two mechanisms explained previously, some other

hypotheses have been put forward to explain how C. albicans

might promote cancer progression.

The first that we are going to consider here is related to

the subset of CD4 T-cells that is dominant in the response

against C. albicans, namely, the Th17 cells (Figure 4A). It is

known that Th17 cells produce IL-17, which is required for

resistance against C. albicans (Acosta-Rodriguez et al., 2007;

Huang et al., 2004; LeibundGut-Landmann et al., 2007).

However, other cytokines of the Th17 family such as IL-23

promote angiogenesis, and tumor incidence and growth

(Langowski et al., 2006, 2007). Moreover, this cytokine

antagonizes IL-12 and IFN-g, both of which are crucial in

Th1-type antitumor immune responses (Langowski et al.,

2006, 2007). In addition to the direct effect of IL-17 on

tumors, this cytokine can also favor cancer processes

indirectly by recruiting neutrophils. These leukocytes are

main effector cells against C. albicans, but their presence in

tumor tissues also correlates with poor prognosis in some

types of cancer (Donskov & von der Maase, 2006).

Although many bacterial species promote the activation

of other Th cell responses, it has been observed that some

can also activate the Th17 immune response (McGeachy &

McSorley, 2012). Such bacterial species could, therefore,

Table 2. Molecules involved in endothelial cell response to Candida albicans.

Molecules Technique References

Cytokines
IL-6 Northern blot Filler et al. (1996)
CXCL8/IL-8 Microarray, northern blot and ELISA Filler et al. (1996) Mueller et al. (2007)
CCL2/MCP-1 Northern blot Filler et al. (1996)
TNF-a ELISA and RT-PCR Orozco et al. (2000), Ramirez-Garcia et al. (2011)
IL-1a RT-PCR Orozco et al. (2000)
IL-1b RT-PCR Orozco et al. (2000)
IL-18 ELISA and RT-PCR Orozco et al. (2000), Ramirez-Garcia et al. (2013)
CXCL1/Groa, Microarray Barker et al. (2008), Mueller et al. (2007)
CXCL2/MIP-2a/Grob, Microarray Barker et al. (2008), Mueller et al. (2007)
CXCL3/MIP-2b/Grog Microarray and RT-PCR Barker et al. (2008), Mueller et al. (2007)
CXCL5/ENA78 Microarray and RT-PCR Barker et al. (2008), Mueller et al. (2007)
CXCL6/GCP-2 Microarray and RT-PCR Barker et al. (2008), Mueller et al. (2007)
CCL20/MIP-3a Microarray and ELISA Barker et al. (2008), Mueller et al. (2007)
CCL3/MIP-1a Microarray Barker et al. (2008)
CCL4/MIP-1b, Microarray Barker et al. (2008)
CXCL10 Microarray Barker et al. (2008)

Adhesion molecules
E-selectin Northern blot Filler et al. (1996)
ICAM-1 Northern blot, Microarray and RT-PCR Filler et al. (1996), Mueller et al. (2007)
VCAM-1 Northern blot, microarray and RT-PCR Filler et al. (1996), Mueller et al. (2007)
VEGF Microarray and RT-PCR Barker et al. (2008)

Others
cyclooxygenase-2 (cox2) Northern blot Filler et al. (1996)
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be involved in carcinogenesis in a similar way to C. albicans.

However, since the Th17 immune response is a key mech-

anism mainly related to anti-fungal immunity, the carcino-

genic effects linked to this pathway should be further

considered for fungal infections in particular.

Finally, there is another mechanism, associated with

molecular mimicry of the complement receptor 3-related

protein (CR3-RP) of C. albicans, which could favor cancer

progression (Figure 4B). This protein has antigenic and

structural similarities with the complement receptor 3 (CR3),

also called Macrophage-1 antigen (Mac-1), which is required

for the adhesion of leukocytes to the endothelium, for

their subsequent extravasation. Therefore, antibodies against

CR3-RP of C. albicans may cross-react with CR3 of

leukocytes and disturb the anti-Candida and anti-tumor

defense of the host (Gilmore et al., 1988; Gustafson et al.,

1991; Hostetter, 1996). This theory might explain why

serum IgG against Candida predicts survival in patients

with metastatic renal cell carcinoma (Ramoner et al., 2010).

Though molecular mimicry associated with cancer pro-

motion has not been observed for bacteria, it has been widely

described that there are many proteins encoded by viruses

that mimic proteins involved in regulation of cell growth and

survival and, in consequence, in cancer (Mesri et al., 2014).

Future perspectives: searching for molecular
targets against pro-tumor and pro-metastatic
effects of C. albicans

It is now common to use antifungal drugs, such as azoles, in

patients treated for cancer to prevent invasive yeast infections,

due to the increased risk and incidence of candidemia

(de Pauw, 2004; Pfaller et al., 2010), in spite of most

antifungals being potentially toxic and their overuse generat-

ing unnecessary direct and indirect costs (Parvez, 2003;

Schlesinger et al., 2009). These problems might be avoided

by more specific drugs that could potentially be designed if

we knew more about the mechanisms explained in this review

and the molecules involved, which could be new molecular

targets. The design of novel specific treatments against these

molecules could inhibit the dissemination of the fungus and,

at the same time, its pro-tumor effect.

Figure 3. Increase in tumor cell adhesion and metastasis caused by an inflammatory response of endothelial cells after being stimulated by Candida
albicans. This yeast adheres to endothelial cells and activates the production of cytokines and adhesion molecules. In healthy individuals, these
molecules attract and recruit leukocytes to destroy the microorganisms. In immunosuppressed cancer patients, however, tumor cells may adhere instead
of leukocytes and give rise to a secondary tumor. PRR, Pattern recognition receptors; TLR, Toll-like receptors.
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Recently published studies have opened the possibility of

two main approaches to addressing the pro-metastatic

inflammatory effect stimulated by C. albicans: the identifi-

cation of the receptors involved in the recognition of the

microorganism, and the characterization of the molecules of

C. albicans recognized to initiate the process.

On the one hand, so far, only the involvement of the

endothelial mannose receptor (MNR) has been studied.

This receptor mediates most of the increase in tumor adhesion

by this process, and its blockade reduces the effect by as much

as 60% (Ramirez-Garcia et al., 2013). Although this could

imply that the use of anti-MNR antibodies in therapies may

help to reduce tumor invasiveness induced by C. albicans or

its mannoproteins, the authors suggested that other receptors

and pathways may also be involved in the same stimulation

of the endothelium. It can be speculated that, among these

other candidates, CXCR2 might have an important role in the

process, since it is a receptor for the cytokines CXCL1/Groa,

CXCL2/Grob, CXCL3/Grog, CXCL5/ENA78, CXCL6/GCP-

2 and CXCL8/IL-8. The same could be said of IL-1R because

is the receptor of the IL-1 superfamily, which include, among

others, IL-1a, IL-1b and IL-18.

On the other hand, the mannoprotein fraction of

C. albicans has been demonstrated to be of special relevance

to the enhancement of tumor adhesion by stimulation

of endothelial cells and inflammation. Proteins identified in

this fraction include: alcohol dehydrogenase (ADH1), ami-

nopeptidase Y (APE3), isocitrate dehydrogenase subunit

(IDH2), enolase (ENO1), fructose-bisphosphate aldolase

(FBA1), ketol-acid reductoisomerase (ILV5), disulfide

isomerase (PDI1), phosphoglycerate kinase (PGK1),

ubiquinol-cytochrome-c reductase (QCR2) and translation

elongation factor Tu (TUF1; Ramirez-Garcia et al., 2011).

One of the proteins that increases tumor adhesion by

induction of inflammation on endothelial cells, ADH1, has

also been related to the first mechanism described in this

review, namely, the stimulation of cancer via acetaldehyde

production. The mannoproteins identified, especially ADH1,

should be studied because of their potential role as therapeutic

targets to avoid the effect of C. albicans on promoting cancer

and metastasis.

Moreover, it should not be forgotten that CR3-RP of

C. albicans is important for the last mechanism described,

mimicry, and that there must be numerous other molecules,

whose relation to cancer remains totally unknown. Hence, the

mechanisms by which C. albicans favors angiogenesis, cancer

progression and metastasis merit further study in the future

to identify such molecules and improve our understanding

of the processes involved.

Conclusion

It is well known that there is an increased risk of developing

C. albicans and other infections during the immunosuppres-

sion caused by chemotherapy for cancer. However, this review

has been focused on the growing strength of evidence that the

reverse is also true. There are many studies reporting

mechanisms by which bacteria and viruses stimulate cancer

development or progression, but there are very few concern-

ing the role of fungi in this context. Herein, we have described

in depth a range of mechanisms by which C. albicans may

be able to favor cancer development and dissemination.

Figure 4. (A) Effect of Th17 response
induced by Candida albicans on cancer.
Th17 cells produce IL-17, which is required
for resistance against C. albicans but favors
cancer process indirectly by recruiting neu-
trophils. They also produce other cytokines,
such as IL-23, which not only promote
angiogenesis and tumor growth, but also
antagonize with IL-12 and IFN-g, both of
which are crucial in Th1-type antitumor
immune responses. (B) Molecular mimicry of
the complement receptor 3-related protein
(CR3-RP) of C. albicans with the
Macrophage-1 antigen (Mac-1). Antibodies
produced against CR3-RP of C. albicans may
cross-react with Mac-1 of leukocytes and
disturb the anti-Candida and anti-tumor
defense of the host.
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The processes involved are related to the production of

carcinogenic substances, inflammation, the Th17 response

and molecular mimicry. Taking into account these mechan-

isms and that dead yeast and even the molecules it produces

may be inducers of tumor processes, it can be concluded

that the presence of C. albicans should be avoided in cancer

patients. Moreover, consideration should be given to the

possibility of including drugs, concurrently with anti-tumor

therapies, to minimize the risk of C. albicans being present

and its effects, including the creation of pro-tumor micro-

environments. However, to develop appropriate treatments

more research is required to deepen our understanding of the

process by which C. albicans promotes cancer.
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